Group Therapy: Treatment Advances in Sarcoma

Soft tissue sarcoma has benefited from research in other cancers.

In 1991, 34-year-old Gina Lamons received a diagnosis of synovial sarcoma and was told that the prognosis for survival was five years. By 1994, her disease had metastasized to her chest and lungs. Now 56, Lamons has long outlived her initial prognosis and the statistical odds due to multiple surgeries, numerous rounds of chemotherapy and radiation, and participation in a clinical trial.

After decades of dealing with metastatic disease, Lamons’ options have become increasingly limited. She completed seven cycles of a 14-day continuous infusion of ifosfamide in July 2012 and was then placed on Votrient (pazopanib) that August. Initially approved for kidney cancer, Votrient blocks the growth of blood vessels to the tumor, as well as certain proteins that promote cancer cell development, and is the only new drug approved for treating sarcoma in years.

In her first follow-up scan in November 2012, none of Lamons’ existing tumors had grown and no new ones had appeared. The scan report also noted there was a decrease in one of the metastatic

Sarcomas are a diverse group of cancers that arise in the body’s supportive tissues, including bone, cartilage, fat, muscle and blood vessels. With roughly 14,000 new cases diagnosed each year, sarcomas are rare, accounting for approximately 1 percent of all cancers in adults. These tumors can be broadly divided into bone and soft tissue varieties, with soft tissue sarcomas (STS) further divided into more than 50 subtypes that get their names from the tissue of origin. Liposarcomas, for example, have malignant fat cells, and leiomyosarcomas have cancerous smooth muscle cells.

Although most cases have no known cause, the risk of developing certain sarcomas is slightly higher in people who have received radiation for other forms of cancer. Certain STS subtypes are also more prevalent in people with genetic disorders caused by mutations in genes that affect cell growth and death. For example, people with Li-Fraumeni syndrome, a rare disorder caused by mutations in the TP53 gene, have a greater incidence of STS along with several other malignancies. In addition, non-inheritable (acquired) mutations in the c-kit gene have been associated with a rare type of STS called gastrointestinal stromal tumor (GIST). These mutations provide clues to the causes of these rare cancers that can lead to better therapies in the future. As the most common early symptom of STS is a painless mass, patients are often unconcerned and delay seeking treatment. As a result, these tumors can grow very large or even metastasize by the time they’re diagnosed. Lamons’ initial symptom—pain in her right thigh—was unusual for STS. An initial X-ray revealed nothing. Physical therapy and pain relief efforts didn’t help. Eventually a lump appeared, and a magnetic resonance imaging (MRI) scan revealed a 6-centimeter mass.

In some cases, a close look at the tumor’s genetics can help clinch the diagnosis. Certain types of STS, including synovial sarcoma and rhabdomyosarcoma, often carry telltale abnormalities called translocations, genetic mix-ups that occur when pieces of one chromosome break off and fuse to another. As a result, rogue proteins can be formed that fuel uncontrolled cell growth.

Talk about this article with other patients, caregivers, and advocates in the Sarcoma CURE discussion group.
CURE wants to hear from you! We are inviting you to Share Your Story with the readers of CURE. Submit your personal experience with cancer by visiting Share Your Story
Not yet receiving CURE in your mailbox? Sign up to receive CURE Magazine by visiting